EMMA
Wissenschaftliche Publikationen
-
FUCHS, C./HUTLE, C./IRMAK, N./LUCA, F./SZALAY, L. (2017): Finitely many tribonacci Diophantine triples exist.
In: Math. Slovaca 67 (2017), no. 4, 853-862.
-
SCHRÖDER, A. (2017): Error control for variational inequalities.
In: Internat. Math. Nachrichten (2017), Nr. 234, 1-18.
-
PETSCHE, A./SCHRÖDER, (2017): A posteriori error control and adaptivity of hp-finite elements for mixed and mixed-hybrid methods.
In: Comput. Math. Appl. 74 (2017), no. 7, 1661-1674.
-
MILICIC, G. (2016): Iterative Löser für lineare Gleichungssysteme.
In: Mathematik im Unterricht (2016), Ausgabe Nr. 7, 13-19.
-
FUCHS, K./MILICIC, G. (2016): Algorithmisches Denken im anwendungsorientierten Unterricht.
In: MARESCH, G./ZUMBACH, J. (Hg.): Didaktik der Naturwissenschaften - Neue Horizonte in Biologie, Geometrie und Informatik, Wien: Facultas Universitätsverlag, S.217-225.
-
FUCHS, C., HUTLE, C., LUCA, F., SZALAY, L. (2016): Diophantine Triples and k-Generalized Fibonacci Sequences.
In: Malays. Math. Sci. Soc., doi:10.1007/s40840-016-0405-4.
-
BÜRG, SCHRÖDER, A (2015): A posteriori error control of hp-finite elements for variational inequalities of the first and second kind.
In: Computers & Mathematics with Applications, 70(12), S.2783-2802, doi:10.1016/j.camwa.2015.08.031.
Tagungsbeiträge
-
HUTLE, C. (2017): Diophantine Triples in Linear Recurrence Sequences of Pisot Type.
Journées Arithmétiques, Caen, Frankreich.
-
FUCHS, K./MILICIC, G. (2017): Hat Algorithmisches Denken Platz im Mathematikunterricht der Sek II.
Jahrestagung der Gesellschaft für Didaktik der Mathematik, Potsdam, Deutschland.
-
FUCHS, C. (2017): Diophantine triples and linear recurrences of Pisot type.
Colloquium on the occasion of Robert Tichy’s 60th birthday, Graz.
-
SCHRÖDER, A. (2017): A Posteriori Error Estimates for h- and hp-adaptive Mixed and Mixed-Hybrid Finite Elements.
LSSC’17, Sozopol, Bulgarien.
-
HUTLE, C. (2016): Overview on Diophantine Triples in k-generalized Fibonacci sequences.
Conference on elementary and analytic number theory, Strobl.
-
HUTLE, C. (2016): Diophantine Triples with values in k-generalized Fibonacci sequences.
Computational Aspects of Diophantine Equations, Salzburg.
-
FUCHS, K. (2016): Die fundamentale Idee des Algorithmus und seine Modifikation durch die letzten drei Dekaden.
Inday teachers, Innsbruck.
-
SCHRÖDER, A. (2016): A posteriori error control and adaptivity of hp-finite elements for mixed and mixed-hybrid methods.
HOFEIM 2016, Jerusalem, Israel.
-
SCHRÖDER, A. (2016): A posteriori error estimates of hp-finite elements for mixed and mixedhybrid methods.
MAFELAP 2016, Uxbridge, Großbritannien.
-
SCHRÖDER, A. (2016): The Sparkling Science Project EMMA – Experimentation with Mathematical Algorithms.
EMMA in the Mathematics Village - Education Days, Sirince, Türkei.
-
SCHMID, W. (2016): University Mathematics in Vocational Secondary Schools.
EMMA in the Mathematics Village - Education Days, Sirince, Türkei.
-
RATH, I. (2016): Cryptography in School Teaching.
EMMA in the Mathematics Village – Education Days, Sirince, Türkei.
-
MILICIC (2016): How to Solve Variational inequalities in Secondary Schools.
EMMA in the Mathematics Village - Education Days, Sirince, Türkei.
-
PFOSER, R. (2016): Applied Mathematical Programming in MATHCAD.
EMMA in the Mathematics Village - Education Days, Sirince, Türkei.
-
MAYER, C. (2016): Teaching Programming at Secondary School Level.
EMMA in the Mathematics Village - Education Days, Sirince, Türkei.
-
FUCHS, K. (2016): Algorithmic Thinking in the focus of Mathematics and Computerscience Education.
EMMA in the Mathematics Village - Education Days, Sirince, Türkei.
-
BACHINGER, T. (2016): The Fundamental Idea of Functional Dependance in Teaching Cryptography at Secondary School Level.
EMMA in the Mathematics Village - Education Days, Sirince, Türkei.
-
HUTLE, C. (2015): Only finitely many Tribonacci Diophantine Triples exist.
Journées Arithmétiques, Debrecen, Ungarn.
-
FUCHS, C. (2015): 30 years of collaboration.
Joint Austrian-Hungarian Mathematical Conference, Györ, Ungarn.
-
FUCHS, C. (2015): Diophantische Gleichungen: A never ending story?
Antrittsvorlesung, Salzburg.
-
SCHRÖDER, A. (2015): Error control and adaptivity for variational inequalities.
Oberwolfach Workshop Computational Engineering, Oberwolfach, Deutschland.
-
SCHRÖDER, A. (2015): hp-adaptive finite elements for variational inequalities.
Variational Inequality Day, HU-Berlin, Deutschland.