EMMA

Wissenschaftliche Publikationen

  • Icon FUCHS, C./HUTLE, C./IRMAK, N./LUCA, F./SZALAY, L. (2017): Finitely many tribonacci Diophantine triples exist.

    In: Math. Slovaca 67 (2017), no. 4, 853-862.

  • Icon SCHRÖDER, A. (2017): Error control for variational inequalities.

    In: Internat. Math. Nachrichten (2017), Nr. 234, 1-18.

  • Icon PETSCHE, A./SCHRÖDER, (2017): A posteriori error control and adaptivity of hp-finite elements for mixed and mixed-hybrid methods.

    In: Comput. Math. Appl. 74 (2017), no. 7, 1661-1674.

  • Icon MILICIC, G. (2016): Iterative Löser für lineare Gleichungssysteme.

    In: Mathematik im Unterricht (2016), Ausgabe Nr. 7, 13-19.

  • Icon FUCHS, K./MILICIC, G. (2016): Algorithmisches Denken im anwendungsorientierten Unterricht.

    In: MARESCH, G./ZUMBACH, J. (Hg.): Didaktik der Naturwissenschaften - Neue Horizonte in Biologie, Geometrie und Informatik, Wien: Facultas Universitätsverlag, S.217-225.

  • Icon FUCHS, C., HUTLE, C., LUCA, F., SZALAY, L. (2016): Diophantine Triples and k-Generalized Fibonacci Sequences.

    In: Malays. Math. Sci. Soc., doi:10.1007/s40840-016-0405-4.

  • Icon BÜRG, SCHRÖDER, A (2015): A posteriori error control of hp-finite elements for variational inequalities of the first and second kind.

    In: Computers & Mathematics with Applications, 70(12), S.2783-2802, doi:10.1016/j.camwa.2015.08.031.

Tagungsbeiträge

  • Icon HUTLE, C. (2017): Diophantine Triples in Linear Recurrence Sequences of Pisot Type.

    Journées Arithmétiques, Caen, Frankreich.

  • Icon FUCHS, K./MILICIC, G. (2017): Hat Algorithmisches Denken Platz im Mathematikunterricht der Sek II.

    Jahrestagung der Gesellschaft für Didaktik der Mathematik, Potsdam, Deutschland.

  • Icon FUCHS, C. (2017): Diophantine triples and linear recurrences of Pisot type.

    Colloquium on the occasion of Robert Tichy’s 60th birthday, Graz.

  • Icon SCHRÖDER, A. (2017): A Posteriori Error Estimates for h- and hp-adaptive Mixed and Mixed-Hybrid Finite Elements.

    LSSC’17, Sozopol, Bulgarien.

  • Icon HUTLE, C. (2016): Overview on Diophantine Triples in k-generalized Fibonacci sequences.

    Conference on elementary and analytic number theory, Strobl.

  • Icon HUTLE, C. (2016): Diophantine Triples with values in k-generalized Fibonacci sequences.

    Computational Aspects of Diophantine Equations, Salzburg.

  • Icon FUCHS, K. (2016): Die fundamentale Idee des Algorithmus und seine Modifikation durch die letzten drei Dekaden.

    Inday teachers, Innsbruck.

  • Icon SCHRÖDER, A. (2016): A posteriori error control and adaptivity of hp-finite elements for mixed and mixed-hybrid methods.

    HOFEIM 2016, Jerusalem, Israel.

  • Icon SCHRÖDER, A. (2016): A posteriori error estimates of hp-finite elements for mixed and mixedhybrid methods.

    MAFELAP 2016, Uxbridge, Großbritannien.

  • Icon SCHRÖDER, A. (2016): The Sparkling Science Project EMMA – Experimentation with Mathematical Algorithms.

    EMMA in the Mathematics Village - Education Days, Sirince, Türkei.

  • Icon SCHMID, W. (2016): University Mathematics in Vocational Secondary Schools.

    EMMA in the Mathematics Village - Education Days, Sirince, Türkei.

  • Icon RATH, I. (2016): Cryptography in School Teaching.

    EMMA in the Mathematics Village – Education Days, Sirince, Türkei.

  • Icon MILICIC (2016): How to Solve Variational inequalities in Secondary Schools.

    EMMA in the Mathematics Village - Education Days, Sirince, Türkei.

  • Icon PFOSER, R. (2016): Applied Mathematical Programming in MATHCAD.

    EMMA in the Mathematics Village - Education Days, Sirince, Türkei.

  • Icon MAYER, C. (2016): Teaching Programming at Secondary School Level.

    EMMA in the Mathematics Village - Education Days, Sirince, Türkei.

  • Icon FUCHS, K. (2016): Algorithmic Thinking in the focus of Mathematics and Computerscience Education.

    EMMA in the Mathematics Village - Education Days, Sirince, Türkei.

  • Icon BACHINGER, T. (2016): The Fundamental Idea of Functional Dependance in Teaching Cryptography at Secondary School Level.

    EMMA in the Mathematics Village - Education Days, Sirince, Türkei.

  • Icon HUTLE, C. (2015): Only finitely many Tribonacci Diophantine Triples exist.

    Journées Arithmétiques, Debrecen, Ungarn.

  • Icon FUCHS, C. (2015): 30 years of collaboration.

    Joint Austrian-Hungarian Mathematical Conference, Györ, Ungarn.

  • Icon FUCHS, C. (2015): Diophantische Gleichungen: A never ending story?

    Antrittsvorlesung, Salzburg.

  • Icon SCHRÖDER, A. (2015): Error control and adaptivity for variational inequalities.

    Oberwolfach Workshop Computational Engineering, Oberwolfach, Deutschland.

  • Icon SCHRÖDER, A. (2015): hp-adaptive finite elements for variational inequalities.

    Variational Inequality Day, HU-Berlin, Deutschland.